NAME PERIOD DATE

5. PROGRAM A GREENHOUSE SENSE AND
CONTROL SYSTEM

What do an ordinary programmable thermostat in a home and the cruise control system in a vehicle have in
common? Both let the user set an ideal value as an input for a program that keeps a system near the desired value.
However, the program for cruise control is more complex than a thermostat program because it's very important for
vehicle speed to stay very close to the ideal value.

A standard thermostat program is based on bang-bang control. When it's cold and the temperature drops to a value a
couple of degrees below ideal, bang! the heater turns on. The heater runs until the temperature goes a couple of
degrees above ideal, then bang! the heater turns off. If you completed any of the previous Greenhouse lab
investigations, you have programmed a bang-bang control system where one or more sensor-based input determines
whether an output should be turned on or off. Proportional control is just one part of the programming strategy
cruise control uses to keep vehicle speed constant. Proportional control also requires sensor-based inputs, but
outputs are regulated or set to constantly adjust by increasing or decreasing instead of being turned on or off.
Vehicle speed input is closely monitored and the system constantly fine-tunes output settings such as throttle
position to get as close to the ideal speed as possible. In this investigation, you will write a 24-hour program that
integrates any combination of new, modified, and existing code with at least one use of proportional control to keep
a living plant happy and healthy inside a fully automated Greenhouse.

Goals

» Incorporate existing code into a new program.

* Design a program that combines a variety of control structures to autonomously maintain a greenhouse.

Materials and Equipment
* Data collection system * Power Output Module with cable
* //control.Node * EcoChamber with lid and stoppers

* Grow Light with included cables and USB power supply + Assembled watering system*

* Greenhouse Sensor * Potted plant, ~4" x ~4"
* Greenhouse Sensor Module with cable and stopper + Shallow dish

* Soil moisture probe + Zip seal sandwich bag
+ USB Pump * Ice

» USB Fan

*Includes all Greenhouse Accessory Kit components (tubing, connectors, drip irrigation heads, hook-and-loop fasteners, and a #5 one-
hole stopper), reservoir filled with tap water for USB pump, and materials to secure drip heads to the plant pot such as several strong
rubber bands, zip-ties, and binder clips. Systems that require increased humidity may include a 2" x 2" sponge and bottle caps,
however, once the plant is added to the Greenhouse, the setup may be modified as humidity conditions will change.

Safety
Follow these important safety precautions in addition to your regular classroom procedures:
» Keep water away from sensor boxes, electrical plugs, and exposed electronic boards.

* Don't allow exposed electronic boards to contact a metallic or conductive surface.

CAUTION:
* Don't look directly at the LED:s.
* Don't touch the LEDs.

5. PROGRAM A GREENHOUSE SENSE AND CONTROL SYSTEM | STUDENT HANDOUT

Research

This section will help you understand how to set up and use a proportional control programming approach.

Complete the following:

1. Connect the //control.Node to your device, choose any template to create a data

display, then open the Blockly Code Tool).
2. Open the Code Library k3| at the upper-right corner.

to requlateTemperature with...

3. Change the category from PASCObot to Greenhouse and open Regulate Temperature. Duplicata

4. Right-click or long-press the fo regulateTemperature with... function block to open the

menu as shown, then choose Expand Block.

Expand Block
Disable Block
Delete 39 Blocks

Create ‘regulateTemperature’

5. Read the comment bubble (@) to get an idea of this function's purpose.

6. Study the how the code is organized. Look for connections between editable function
input values on the first function block (pre-set to 24, 8, and 20) and the code itself in
the expanded function block. Predict how this proportional control system works
before reading on (Hint: the item in port B, CHI is the USB Fan).

The USB Fan uses bang-bang control to keep the Greenhouse temperature near the idealTemperature while the
Grow Light is on. If the fan alone can't maintain ideal temperature, /ightIntensity decreases from the ideal value to a
lower intensity until temperature stabilizes near ideal. When temperature is stable the light intensity can gradually
increase as long as ideal temperature is met. But what do the error and proportionalityConstant variables do?

First, let's look at the 3 editable function inputs:

* idealTemperature - The target temperature is set to 24 °C.
* lightintensity - The Grow Light red and blue intensities are initially set to level 8.
 proportionalityConstant - This has a value of 20... what exactly does that mean?

As seen in the code, proportional control programs need 3 things: an ideal value for a

regulateTemperature with:
idealTemperature

lightintensity | E3
proportionalityConstant | [EZi)

variable called the setpoint €); a sensor measurement input called a process variable
which checks real-time measurements @) against the setpoint; and error, which is the
difference between the setpoint and the actual temperature, €Y - @.

The farther the actual temperature gets from the setpoint,
the bigger error gets. If there is no difference between
actual temperature and setpoint, error is zero and the
system is stable. If the measured temperature is higher
than setpoint, error is negative or below zero @ and the
fan will turn on; otherwise it will be off.

The USB Fan can't be set to different power levels so you
can only use bang-bang control. The Grow Light has
adjustable intensity so it can use proportional control.
Grow Light output is proportional to error, which means
the ratio between Grow Light intensity and error is a fixed
value equal to the proportionality constant. The constant
multiplies error @) and adds it to the initial Grow Light
intensity specified in the function input to calculate the
intensity variable. The intensity variable is then used to
update the Grow Light to a new intensity @) as needed.

Error size and its positive or negative status make a
difference. Negative error sets intensity lower than initial

set to
set (ISR to

S
eatemperatute M- - L] Temperature)
lightintensity - proportionalityConstant - Il x * It! error - |
> I

g e
8 a(c
do @t [EICTIVIE Y //control.Node ~ Noloiid B, CH1 ~ RTELGE USB + o8

else | set power output for (2L port ERCEIES using (VEEXES on:

Cr ©

Set growlight for (= = port -3 {0 brighthess R n B n
else if ‘

set grow light for (ZETEIEEER port €M to brightness R B

else Eeigmw light for (FXTTEINEEEM port (3B to brightness R ml B
E

intensity, while positive error (where the actual temperature is lower than setpoint) sets intensity higher than initial
intensity. Higher proportionality constants make greater changes to light intensity when the Greenhouse temperature
moves away from ideal.

5. PROGRAM A GREENHOUSE SENSE AND CONTROL SYSTEM | STUDENT HANDOUT

50
—~ 45 ey :
g Setpoint|= 22.6 °C [T I e [U———— T P S .
o 225+ : 3‘;
= r 8
g 2204 =)
© Legend (both graphs) 5 257
= Constant at 20 20 1
215 } pr = Constant at 40 15 ; | |
0 200 400 600 0 200) 400 600
Time (s) Time (s)

The graphs above show temperature data (left) and brightness data (right) for two 10-minute runs with the
regulateTemperature function in a repeat while true loop. The setpoint was 22.6 °C for both runs. The solid line
shows results when the proportionality constant was set to 20, and the dotted line shows results for the constant set
to 40. On the left, both constants allow temperature to oscillate (repeatedly go above and below) around the setpoint.
Did you notice that when the constant is set to 40, temperature is more stable between oscillations? Now look at the
difference in Grow Light intensity oscillations on the right. The brightness drops @ /ot more when the constant is set
higher - so less intense light and less heat is added to the chamber, that's why temperature is more stable with a
higher proportionality constant.

Prototype

Part 1: Setup

Greenhouse Setup

1. Turn off the //control.Node and close SPARKvue.
2. Water your plant if needed.

3. Set the Greenhouse Sensor Module @), moisture probe @), and Grow Light € in the Greenhouse lid as shown in
Figure 1.

Figure 1. Greenhouse setup

4. Gently pull about 1 foot of extra soil moisture probe cable through the lid.

5. Use binder clips and rubber bands @ to secure tubing and drip heads to the plant pot as shown in Figure 1 (your
pot should include a plant).

6. Push the moisture probe into the pot as far as it can go near a drip head as shown. Compact the soil around the
probe.

7. Set the plant inside the Greenhouse with drip heads pointed slightly upward and with tubing set in a hook shape
as shown @ to avoid air bubbles and excess drainage.

8. Optional: If standing water is part of your humidity control strategy, arrange bottle caps, drip heads, and
standing water as needed. If a wet sponge is part of your strategy, devise a system for keeping the sponge at the
proper height and distance from the fan once the fan is installed.

5. PROGRAM A GREENHOUSE SENSE AND CONTROL SYSTEM | STUDENT HANDOUT

9. Place the lid on the Greenhouse and secure the water system tubing stopper and USB Fan in the side holes.
10. Gently pull excess moisture probe cable back through the lid and align the Grow Light with the light sensor.

11. Build a cooling system as shown in Figure 2. Add ice cubes to a shallow dish until it is nearly full €).

(B

T % oal
s, Y

TG —

Figure 2. Cooling system placed beneath lid

12. Set the dish inside the zip seal bag, remove excess air from the bag, and seal it.

13. Use the cooling system when you need temperature to rapidly decrease during testing. To use, set the chamber
lid on the table with the cooling system positioned directly beneath the stopper where the Sensor Module
temperature sensor sits (@), arrow). Do not allow the cooling system to contact any part of the Sensor Module.

Hardware Setup

1. Connect the moisture probe @) and light, humidity, and temperature sensor cables @ to the Greenhouse Sensor
as shown in Figure 3. Plug the sensor into the //control.Node €.

: %.—-%m@ 7

asnoyuaaib

(front) (back)

Figure 3. Hardware setup

2. Plug the Grow Light into //control.Node port A @). Connect the light to its USB power supply.
3. Plug the Power Output module into //control.Node port B @.
4. Plug the USB Fan into Channel 1 @), and plug the USB Pump into Channel 2 @.

Part 2: Upload Code to the ..//control.Node

The //control.Node has a feature that lets you store your Blockly code right on the device itself - so you don't even
need to be connected to SPARKvue to run your program! You can see how this is handy for a Greenhouse that needs
to run on its own for days, weeks, or months at a time.

1. Open SPARKvue and connect the //control.Node to your device.

2. Select ¥] Temperature and any other Greenhouse Sensor measurements you wish.

5. PROGRAM A GREENHOUSE SENSE AND CONTROL SYSTEM | STUDENT HANDOUT

3. Disable the //control.Node On-board Sensor measurements by changing the slider from on @ to off «

4. Select any data display template you like. When the data display opens, start collecting data to record the current
temperature, then stop collecting data.

5. Use the icon [2] to open the Code Tool.
6. Go to the Code Library and insert the Regulate Temperature Greenhouse function.

7. Change the idealTemperature variable from the default value of 24 °C to 0.2 °C higher than the temperature you
just recorded.

8. Place the function block inside a repeat while true loop. Test the code for a few seconds to make sure it works.
Revise if necessary.

9. Use the Upload code icon [|{] at the top-right to send the code to the //control.Node. You will hear a series of
beeps that indicate code upload is successful.

10. Use the green Start Code Execution button -] at the top-right to start running the program stored on the
//control.Node. When uploaded code is running, you will see a flashing blue light on the //control.Node.

11. Close SPARKvue. Notice how the outputs continue to work in the Greenhouse and the blue light continues to
flash.

12. Open SPARKvue and connect the //control.Node, then repeat steps 2 and 3.

NOTE: Uploaded code can only return sensor measurements, text and numeric outputs cannot be retrieved
from uploaded code. Text and numeric outputs can only be retrieved in a data display when code execution is
initiated with the Start @ button in SPARKvue.

13. Start collecting data; allow a few seconds of data collection, then stop collecting data. Notice how the uploaded
program continues to run whether data collection is running or not.

14. To stop the program from running on the //control.Node, either open the Code Tool and choose the Stop Code
Execution icon [l at the top-right, or turn off the //control.Node.
Part 3: Review Existing Code

1. Go to the main menu in SPARKvue &) and choose Open.... Navigate to any previously saved work from any
previous Greenhouse investigation that contains working code and open the file. Alternatively, you can reference
code screenshots or sketches made from previous investigations.

2. Review your code. Decide where changes must be made for the program to work within a 24-hour cycle; make
notes as you work.

3. Repeat steps 1-2 for all existing Greenhouse coding investigations. Use Code Library functions if desired.

4. Rebuild or open and run any previously-created code that has text outputs. While data collection is running, go
to the data display and build a New Page ([E).

5. Choose the full-page layout |and add a Table Display .

6. Choose Select Measurement to add at least one Greenhouse Sensor-based measurement and at least one text
output from the code. To add a text output, choose Select Measurement then switch from the Sensors tab to the
User-entered tab in the menu that opens to the right.

7. Open the Table Tools menu &: below the table to add or remove table columns.

8. Observe data as it is added to the table. Use this type of data observation when you're troubleshooting code as it
sometimes helps reveal new information.

Part 4: Plan Your Code

On a separate paper, sketch a flow chart that shows how you plan to modify and combine existing code to create a
single program that:

1. runs on a 24-hour cycle with the daily start time defined by you;

5. PROGRAM A GREENHOUSE SENSE AND CONTROL SYSTEM | STUDENT HANDOUT

2. determines a logical order of input and output events using appropriate loops and time blocks;
3. uses functions to keep program events separate and organized,

4. provides regular sensor input (temperature, humidity, brightness, soil moisture) to monitor conditions at an
appropriate time interval for each measurement;

5. uses measurement inputs to trigger USB Pump activity, USB Fan action, and Grow Light intensities that
maintain the preferred temperature, humidity, brightness, and soil moisture conditions for your plant throughout
the day (remember to set the ideal temperature some amount above the current room temperature);

6. incorporates visual alerts (text output in a Digits display) and audio alerts (through the //control.Node speaker);
and,

7. incorporates bang-bang control and proportional control.

The flow chart should include the approximate time of day each event occurs as well as ideas of the types of blocks
you will use. The flow chart does not need to show all lines of code; its purpose is to help you plan and think about
the things that need to happen in a logical order with the correct kinds of variables, loops, sleep delays, etc. needed
for a successful program. For example, a flow chart step might say "sleep for an hour then use a for each item loop
with a list to gradually turn on the light" instead of listing the many blocks that would be required to complete the
task.

Test

Start a new experiment in SPARKvue and begin converting your flow chart to code. Remember to test each code
feature as you work so troubleshooting is easier, and save your work as you go. For reference, there are 3,600
seconds per hour and 86,400 seconds per 24-hour day. Write code with seconds in mind, but when testing, change
the time units from seconds to milliseconds to condense 1 hour into 3.6 seconds. This way, 24 hours is condensed
into only about 1.5 minutes. Your program must meet all of the criteria outlined in step 4 of the previous section. If
you get stuck during troubleshooting, try creating a table to see code results directly. Screenshot and print or sketch
your code on a separate paper when finished, then answer the questions that follow. Save your work in SPARKvue
for future reference. If you plan to let the greenhouse run autonomously on a long-term basis, keep the
//control.Node plugged in to USB power, upload code, and execute code on the //control.Node before you exit
SPARKvue.

1. Summarize the events that occur in your 24-hour program, and explain how your program was written to ensure
the correct timing over a 24-hour period.

2. What were the top 2 challenges you faced when combining multiple input and output events into a single
program?

5. PROGRAM A GREENHOUSE SENSE AND CONTROL SYSTEM | STUDENT HANDOUT

3. What advice would you give your peers on how to be successful when combining multiple input and output
events into a single program?

4. Explain your approach to using proportional control in your 24-hour program. Describe at least one advantage
this type of control has over bang-bang control.

Improve

* Research the feeding or fertilization recommendations for your plant; add text and audio reminders to keep up
with the recommended schedule.

» Instead of beeps, code a few notes from recognizable songs. For example, recreate a few notes similar to the
chorus from Rhianna's Umbrella or Gene Kelly's Singin' In The Rain while the USB Pump is watering plants.

» Use a distinctive, attention-getting color changing or flashing Grow Light pattern to convert any text-based alert
into a light-based alert.

	5. Program a Greenhouse Sense and Control System
	Goals
	Materials and Equipment
	Safety
	Research
	Prototype
	Part 1: Setup
	Part 2: Upload Code to the ..//control.Node
	Part 3: Review Existing Code
	Part 4: Plan Your Code

	Test
	Improve

